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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10400

The world’s over 3,800 coal-fired power plants are sources 
of substantial emissions of toxic air pollutants. This study 
explores people’s unequal exposure to air pollution from 
these coal plants. It simulates the wind dispersion of pol-
lutants originating from each coal power plant using the 
Hybrid Single Particle Lagrangian Integrated Trajectory 
Model (HYSPLIT) with Gaussian dispersion. The study 
generates three-dimensional pollution trajectories and 
provide a global map of nitrogen oxide (NOx), sulfur 
dioxide (SO2), and particle pollution from coal plants and 
their contributions to overall pollution levels. The study 

estimates that 2.3 billion people globally are exposed to 
SO2 and particle pollution from coal plants; 247.5 million 
of them are exposed to transboundary pollution from for-
eign coal plants. The findings show that pollution increases 
with income levels, though at a diminishing rate at high 
income levels. In the proximity of coal power plants, down-
wind areas are associated with higher pollution and lower 
income levels compared to areas upwind. These findings are 
consistent with strategic location choices that cause or rein-
force environmental injustices associated with air pollution.

This paper is a product of the Office of the Chief Economist, Sustainable Development Practice Group. It is part of a 
larger effort by the World Bank to provide open access to its research and make a contribution to development policy 
discussions around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/
prwp. The authors may be contacted at xd2197@columbia.edu, jrentschler@worldbank.org, and jruss@worldbank.org.
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1 Introduction

Coal remains a widely used source of energy supply, but is associated with tremendous societal

costs, including air pollution, climate change, acid rain, wastewater discharge, and wastage of

financial resources. In the U.S. alone, coal-fired power plants release more than 3.1 million

tons of sulfur dioxide (SO2), 1.5 million tons of nitrogen oxide (NOx), and 0.2 million tons of

particulate matter each year.1 At the same time, they also release substantial lead, mercury,

volatile organic compounds, arsenic, and other toxic chemicals. The evidence is unequivocal that

these air pollutants are linked with heightened risks of asthma, cancer, heart and lung ailments,

neurological diseases, and broader public health impacts (Manisalidis et al., 2020).

In addition to their high environmental and health costs, coal-fired power plants operate

with low efficiency and a lack of profitability. More than 40 percent of the world’s coal plants

are operating at a loss, not least due to high fuel costs, and this share could rise to 75 percent

by 2040 (Gray et al., 2018). However, power plants are still expanding in number and capacity,

as their economic viability is propped up by fossil fuel subsidies. Each year, the IMF estimates

that governments around the world spend around $13.6 billion to artificially lower the price of

coal, thus perpetuating the operation of unprofitable coal-fired power plants and the associated

air pollution (Parry et al., 2021).

The existing literature, primarily focused on the U.S., has documented significant and sys-

tematic inequality in the exposure to such air pollution. For instance, hazardous waste facilities

are disproportionately sited in minority communities (Boer et al., 1997; Graham et al., 1999).

Analyzing environmental justice in the fossil fuel industry, Carpenter and Wagner (2019) find

that air pollution is higher in counties with higher unemployment levels. This pattern is in-

consistent with the fair treatment notion of the U.S. Environmental Protection Agency (EPA),

which states that “no group of people should bear a disproportionate share of the negative envi-

ronmental consequences resulting from industrial, governmental and commercial operations or

policies” (EPA, 2020). While such environmental injustice in the context of air pollution is well

documented in high-income countries, evidence remains scarce for lower income countries and

at the global scale.

This paper addresses this gap by documenting the regressive nature of the air pollution and

health burden associated with the continued use of coal power plants. It finds that, globally,

2.32 billion people are exposed to air pollution originating from coal power plants. We find

that air pollution from coal plants increases with income levels, though at a diminishing rate at

high income levels. In other words, coal power plants are located in richer countries, and richer
1Data comes from the 2014 National Emissions Inventory (NEI) compiled by the U.S. EPA.



regions within countries.

However, in the proximity of plants, downwind areas are associated with higher pollution

and lower income levels compared to areas upwind; thus suggesting that low-income groups are

disproportionately affected by air pollution. This result is consistent with strategic location

choices for polluting assets, and the spatial sorting of low- and high-income communities. It is

indicative of systematic environmental injustice concerns at a global scale.

2 Evidence from the existing literature

Economic development has been associated with an increase in polluting activities.

There is some evidence that as countries develop economically, they tend to consume more

energy and expand industrial activities – thus resulting in higher economic outputs and more

pollution. Eventually, however, polluting activities are replaced by cleaner ones (e.g. sectoral

switch from industry to services), and polluting technologies may be replaced by cleaner options

(e.g. replacing coal with gas or renewables). Rentschler and Leonova (2022) find that air

pollution is the most severe in medium-income countries, and is lower in both low- and high-

income countries.

Polluting assets are purposefully located in low-income or minority neighbour-

hoods. Wolverton (2009) examines the role of community socioeconomic characteristics at the

time of location decisions of manufacturing plants, while controlling for other input costs. They

show that the presence of racial minority communities is significantly and positively related to

plant location, while income is significantly and negatively related to plant location. There is

some evidence that both very poor and very rich neighborhoods have fewer polluting facilities

(Been and Gupta, 1997; Arora and Cason, 1999). Zwickl et al. (2014) examine U.S. cities’ envi-

ronmental inequality by race in 2007, and find that Black and Hispanic neighborhoods are the

most exposed groups to industrial air toxics in the Midwest and South Central regions. A de-

scriptive analysis for the period from 1995 to 2004 shows that Black communities have remained

consistently more exposed to air pollution than white communities. They show that income is

non-linearly correlated with pollution exposure: middle-class African-Americans are exposed to

more toxins than lower-income white communities.

Pollution transcends borders. Studies have shown that polluting sites can display a

systematic tendency to be located near administrative borders. This may reduce environmental

and health costs on domestic residents, while creating transboundary externalities. Monogan III

et al. (2017) provides empirical evidence that major air polluters in the U.S. are more likely to

be located near the downwind borders of states. Similarly, Morehouse and Rubin (2021) show
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that coal-fired electricity generators in the U.S. tend to locate near county and state borders;

57 percent are within 5 kilometers of a county border; 25 percent are within 5 kilometers of

a state border. In comparison, natural gas plants – which have substantially lower emissions

and face lower emission-based environmental regulatory pressures – do not exhibit this spatial

sorting pattern. The presence of environmental free-riding has also been detected in cases of

water pollution disproportionately borne by downstream jurisdictions (Sigman, 2005; Lipscomb

and Mobarak, 2016) and in toxic emissions into the air and water near state borders relative to

same-state regions (Helland and Whitford, 2003).

Air pollution can suppress socioeconomic development, and alter the socioeco-

nomic composition of neighborhoods. Hanlon (2019) shows that pollution due to coal had

negative impacts on city growth in Britain in 1851-1911, measured by low employment and slow

population growth. Heblich et al. (2021) show that air pollution has historically been unequally

distributed across neighborhoods within former industrial cities, which has led to persistent sort-

ing across neighborhoods by socioeconomic status. Poorer households tend to live downwind

of pollution sources. Historic air pollution patterns are shown to explain up to 20 percent of

observed neighborhood segregation in 2011, even though coal pollution stopped in the 1970s.

Similarly, in China, Chen et al. (2022) show that air quality plays a role in migration choices of

workers. Using a nationwide air quality reporting program as a natural experiment, the study

finds that 1 percent of migration decisions are made in response to newly available information

on air quality. Similar findings are documented by Khanna et al. (2021), who find that workers

emigrate across cities within China when air quality deteriorates. The study also shows that

skilled workers have more migration responses than the unskilled, and that air quality explains

across-city differences in productivity.

Air pollution decreases labor productivity. To control for potential quantity responses

to productivity changes, Graff Zivin and Neidell (2012) focus on production workers in busy

farming seasons, whose contracts specify fixed working hours. They find that a 10 parts per

billion (ppb) increase in ozone (O3) concentration decreases the labor productivity of US farmers

by 5.5 percent. In a similar vein, Chang et al. (2019) study service workers in a call center where

workers have little discretion over their work hours. They show that a 10 unit increase in an air

pollution index reduces the number of calls workers complete by 0.35 percent.

To overcome the endogeneity issues, several studies adopt an instrumental variable approach

to document similar adverse effects on productivity. He et al. (2019) take advantage of pollution

spikes caused by atmospheric inversion, which occurs when hot air masses are caught above

cold air masses, thus trapping pollutants. The study finds that a 10µg/m3 increase in PM2.5
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at least 25 days can reduce the daily output of manufacturing workers by 1 percent. Using the

same instrument, Chen and Zhang (2021) show that a 10 unit increase in an air pollution index

decreased the labor productivity of prison workers by 4 percent.

Air pollution has detrimental impacts on human health. To isolate the impact of air

pollution on health outcomes, several studies have used prevailing wind directions as an iden-

tification instrument. Anderson (2019) leverage the quasi-random variation in pollution levels

generated by wind patterns near highways in Los Angeles in 1999-2001. The study finds that

doubling the percentage of time spent downwind of a highway increases mortality among indi-

viduals aged over 75 by 3.6 to 6.8 percent. Deryugina et al. (2019) study Medicare beneficiaries

in the U.S. and find that a 1 µg/m3 increase in PM2.5 causes 0.69 additional deaths per million

elderly individuals.

Other studies use atmospheric inversion as an instrument to study the impact of air pollution

on health outcomes. Controlling for temperature, inversions do not represent a health risk apart

from the heightened accumulation of pollutants that they cause. Arceo et al. (2016) show that an

increase of 1 ppb in carbon monoxide (CO) and 1 µg/m3 in PM10 during atmospheric inversions

result in 0.032 and 2.4 additional infant deaths per million births.

The timing of environmental regulations and of polluting events can also help to identify

health impacts. Greenstone and Hanna (2014) show that India’s anti-pollution laws led to

improvements in air quality and had positive but insignificant impacts on infant mortality.

He et al. (2016) exploit the timing of mandated air quality measures during the 2008 Beijing

Olympic Games, and find that a 10 percent decrease in PM10 concentrations reduced the monthly

standardized all-cause mortality rate by 8 percent. Barrows et al. (2019) show that the expansion

of coal-fired power generation increases surrounding NO2 pollution. A one gigawatt increase in

coal-fired power generation capacity is estimated to result in a 14 percent increase in infant

mortality rates in districts near the plant site compared to more distant districts. Fan et al.

(2020) apply a regression discontinuity design based on different starting dates of winter heating

in different cities in China. They find that winter heating increased the weekly Air Quality

Index2 by 36 percent on average and caused a 14 percent increase in the all-cause mortality

rate. Imelda (2018) studies the effect of an Indonesian kerosene to liquid petroleum gas (LPG)

cook stove conversion program. LPG cook stoves produce significantly less indoor air pollution,

which the study documents to lead to 0.4 fewer infant deaths per thousand births.

Air pollution increases private and public health expenditures. The health impacts

of air pollution are not only documented in mortality and morbidity rates, but also in health ex-
2The Air Quality Index (AQI) in China is calculated based on six air pollutants, SO2, NO2, PM10, PM2.5,

CO and O3. A low value means good air quality, and a high value means poor air quality.
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penditure and hospital visit numbers. In the U.S., each 1 µg/m3 increase in PM2.5 is estimated to

increase three-day emergency room (ER) visits by 2.7 per million and inpatient ER spending by

$16,000 per million (Deryugina et al., 2019). Using weather variations for identification, Barwick

et al. (2018) find that a 10 µg/m3 decrease in PM2.5 reduces annual healthcare spending by over

$9.2 billion in China, which is equivalent to 1.5 percent of average annual healthcare expenditure.

Deschenes et al. (2017) estimate that NOx and O3 pollution levels dropped by 35 percent and 6

percent respectively after the NOx Budget Trading Program started in participating states. As

a result, drug expenditures decreased by 1.9 percent in participating states.

Schlenker and Walker (2015) use network delays to instrument air pollution at California

airports. They find a one standard deviation increase in daily airplane taxi time increases CO

pollution by 23 percent, and a one standard deviation increase in pollution explains one third of

daily asthma admissions. Relying on a driving restriction policy, Zhong et al. (2017) find that

a 22 percent increase in NO2 due to traffic congestion increases ambulance calls by 12 percent

in Beijing. Apart from direct medical expenditure, some studies also document increases in

protective investments. For example, Ito and Zhang (2020) find that household spending on air

purifiers increases by $1.34 for each 1 µg/m3 increase in PM10 due to the Huai River heating

policy. A 100-point increase in AQI increases spending on all masks by 54.5 percent and anti-

PM2.5 masks by 70.6 percent (Zhang and Mu, 2018).

We make three contributions to the literature. First, studies on air pollution and its impacts

primarily use wind directions to evaluate unequal exposure or instrument pollution. However,

actual pollution disperses as a mass with changing directions along its pathways. We combine

the HYSPLIT model and Gaussian dispersion to better simulate trajectories. Second, existing

papers focus on one region or conduct program evaluations. Our paper analyzes all operating coal

power plants worldwide and projects pollution on income maps. This practice provides a global

picture of pollution and its coexistence with poverty. Third, while earlier evidence shows that

pollution worsens labor productivity, there is no causal evidence that pollution affects aggregate

economic outputs. We adopt econometric methods to test changes in GDP per capita, GDP,

and HDI due to plant operations.

3 Data and methods

3.1 Data

In this study, we analyze air pollution originating from coal-fired power plants. Basic charac-

teristics of coal plants are derived from the Global Coal Plant Tracker developed by CoalSwarm
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(Shearer et al., 2021). The tracker uses public sources to identify and document all coal-fired

power generation units with a capacity of at least 30 megawatts across the world. For each unit,

it records the name, operator, capacity, coordinates, operating status, as well as start and end

years (if applicable). To determine the sample for this study, we use coal plants that were op-

erational in January 2013. This yields a sample of 6,321 coal-fired power generation units, sited

in 3,875 unique plant locations. These plants are distributed widely across the world, though

mainly concentrated in the U.S., Europe, and South and East Asia (Figure 1).

Figure 1: Power plant locations

Notes: Source: (Shearer et al., 2021). This figure shows the spatial distribution of coal-fired power plants as of January
2013. Each black dot denotes an operating unit.

Emission intensities of power plants are obtained from the Global Power Emissions Database

(GPED) (Tong et al., 2018). GPED records global fossil fuel- and biomass-fired power plants

and their emissions as of 2010 at the plant level (Tong et al., 2018). It is compiled based on

basic information from plant operators, complemented with emissions data for plants in the

U.S., China, and India from more comprehensive data contained in the regional databases, the

Emissions Generation Resource Integrated Database (eGRID) from the U.S. EPA, the China

coal-fired Power plant Emissions Database (CPED) (Liu et al., 2015) and the Indian Coal-

fired Power Plants Database (ICPD) (Lu and Streets, 2012). We use NOx, SO2, and primary

particulate emission intensities at the plant level in 2010.

While GPED covers 231 countries and regions and all their coal-fired power generating units,

it contains missing emission intensities, which we manually fill in using countrywide averages.

We also use population data to calculate pollution exposure. Population data comes from the
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Gridded Population of the World (GPWv4) dataset, developed by Columbia University based

on population and housing censuses (CIESIN, 2016).

Data are available in five-year steps for the period from 2000 to 2020 with a spatial resolution

of 30 arc-seconds (which is equivalent to about 1 kilometer at the equator). We use the 2015

version for further analysis.

Income data is obtained from Kummu et al. (2018) who provide gridded global datasets for

GDP, GDP per capita, and Human Development Index (HDI) for every year from 1990 to 2015.

GDP and HDI estimates are provided at 5 arc-minutes resolution, while GDP per capita (PPP)

has a resolution of 30 arc-seconds. To generate these datasets, Kummu et al. (2018) use World

Bank datasets, the Central Intelligence Agency’s (CIA) World Factbook, and subnational GDP

per capita data developed by Gennaioli et al. (2012), and employ country-specific interpolation

and extrapolation. These gridded datasets are consistent worldwide and comparable across

countries and years. Figure 2 shows gridded GDP maps for six years. Areas that do not have

any population are dropped from our analysis.

3.2 Model

We simulate the wind-dispersion of air pollutants from coal power plants in four steps.

First, we use the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)

to simulate the movement trajectories of particles originating from power plants, in line with Du

et al. (2020). We generate 96 forward trajectories for 6,321 power generation units. Four such

trajectories are visualized in Figure 3. Pollutant movement is calculated based on the Global

Data Assimilation System at a 1 arc-degree resolution. We assume each pollutant particle has

a four-day (i.e. 96 hours) lifespan and an initial altitude of 100 meters. Starting from the

originating plant, the location of particles is simulated beginning from 11 am on January 1st,

2013, in hourly increments until 11 am on January 5th. Each location is a three-dimensional

coordinate, specifying longitude, latitude, and altitude.

The second step is to account for particle dispersion along the simulated trajectories. This

reflects the fact that air pollution is not a single particle but an air mass, and the affected area is

not a trajectory line but an area with a concentration gradient. Thus, we translate each simulated

point location from the HYSPLIT modeling into an affected area. We follow the Calpuff model

and simulate three-dimensional Gaussian dispersion along the modeled trajectories. Dispersion

is specified as follows (Agency, 1995):

C =
Q

2πσxσy
g exp[

−d2a
2σ2

x

]exp[
−d2c
2σ2

y

]
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Figure 2: Gridded GDP map

Notes: Source: (Kummu et al., 2018). This figure shows the temporal and spatial variation of GDP 1990-2015.

g =
2√
2πσz

∞∑
n=−∞

exp[
−(He + 2nh)2

2σ2
z

]

where C is the pollution concentration of interest; Q is the pollutant mass, positively correlated

with emission intensity; σx, σy, and σz are standard deviations of dispersion. These dispersion

parameters are chosen based on Miller (1978) and actual weather conditions from the Global

Data Assimilation System (Kleist et al., 2009). Moreover, dx, dy, and dz are distances from the

pollution source to the recipient in along-wind, cross-wind, and vertical directions; He and h

measure the altitude of the pollution source and recipient respectively.

After translating the 606,816 location points (i.e. trajectories for 6,321 coal power generating

units, each consisting of 96 hourly location points) into affected areas, we aggregate pollution

concentrations at the recipient pixel level. At each recipient pixel i, the concentration is the

sum of all power plants’ contribution of emissions at each time step. Thus, at the steady state,
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Figure 3: Four sample trajectories from HYSPLIT and pollution dispersion modeling output

Notes: The left figure shows four sample trajectories from the Mauda power plant in India. Four simulated trajectories

started at 5am, 11am, 5pm and 11pm on January 1st, 2013. The right figure shows our modeled outputs. Background

color shows pollution concentrations. Blue dot and arrow show plant location and wind direction. Transparent blue

quarter circles are borders of upwind and downwind areas analyzed in Section 4.3.

ambient pollution at any recipient pixel is calculated as:

Concentrationi =

∞∑
a=0

6,321∑
j=1

Pollutionija

where Pollutionija captures pollution emitted by plant j received by pixel i, and pollutant is at

age a. Based on hourly observations, we add two additional steps within each hour. In the actual

dispersion, air pollutant disperses every second in each hour interval. Due to the computation

limit, we only calculate dispersion every 20 minutes. Compared with hourly dispersion, this

practice helps to capture affected areas within each hour.

The last step is to project income maps to the pollution map. Through steps 1 and 2, we

generate pollution maps for SO2, NOx and primary particles3 at 0.01-degree resolution. We focus

on SO2 in Section 4 as coal power plants contribute to most ambient SO2 compared with other

emission sources. Also, primary particles and NOx are driven mainly by secondary formation,

and HYSPLIT modeling cannot capture further chemical transformations.

Out of a total of 648,000,000 pixels in a world map at 0.01-degree resolution, only 1.72

percent of pixels are populated. We overlay pollution and population maps, and drop areas with

zero population. This yields a final sample of 11,163,331 pixels at 0.01-degree resolution.

Figure 4 shows sample maps for simulated SO2 pollution. The upper left figure shows
3Primary pollutants are pollutants emitted directly from a source. Secondary pollutants are not directly

emitted but form when other primary pollutants react. Besides, particles include particles of all sizes.
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pollution distribution near the Mauda coal power station in India. SO2 concentrations decline

as the pollutant mass moves further away from the plant. The other three figures show SO2

pollution in India, China, and Europe. They document pollution hotspots near power plants

and their surrounding areas, with concentrations decreasing with distances to plants. Besides,

concentration levels differ across affected areas due to different emission intensities. For instance,

coal plants in China and India can be seen to be more polluting compared to those in Poland.

Figure 4: Modeled SO2 concentration maps for India, China, and Central Europe

Notes: SO2 distribution in India (left), China (middle), and Germany and Poland (right). Unit: ln(ng/m3). Spatial
resolution: 0.01 arc-degrees.

4 Findings: Exposure, health impacts, and the unequal burden

of pollution

In this section, we first present a summary of the exposure and health impact estimates derived

from the modeled air pollution maps. Our modeled results provide a global picture of the overall

pollution contribution of coal power plants and its spatial distribution. We estimate that 2.32

billion people are exposed to particle pollution from coal power plants, with China and India

together accounting for 1.29 billion.

We then present evidence on the unequal distribution of air pollution from coal plants. At

the country level, we show that higher national income levels are associated with more coal-fired

power plants, and thus higher pollution burdens. Similar patterns are found within countries,

with negative associations between local income levels and air quality. We also show that power

plant locations are not evenly distributed across income groups. In the proximity of coal plants,

downwind areas are systematically poorer than upwind areas. Thus, poorer communities are

disproportionately exposed to toxic pollution from coal plants.
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4.1 Population exposed to power plants’ emissions

Using the modeled air pollution map, we estimate global exposure headcounts to coal power plant

pollution around the world. We estimate that globally 2.32 billion people are exposed to SO2

emissions from coal-fired power plants, 1.29 billion of which are in China and India alone. Figure

5 shows the top 10 countries with the highest population and highest proportion of population

affected by coal plants’ pollution. China, India, and the U.S. have 895.7, 392.4, and 157.0 million

people exposed respectively, due to their high plant concentrations and population densities. The

left panel of Figure 7 visualizes the proportion of population that are exposed to any level of coal

plants’ pollution relative to national population in each country. Most countries show similar

patterns as Figure 1 given within-country pollution dispersion. Czechia and Germany have 97

percent and 83 percent of their population exposed, including to high transboundary pollution

flow from foreign plants. The proportion of affected population ranges from 0 to 97 percent,

with an average of 12 percent; 13 countries have over half of their population exposed to air

pollution from coal plants.

Focusing on cross-border pollutant flows, Figure 8 shows the share of national populations

that are exposed to foreign plants’ pollution (left) and that face higher foreign pollution than

domestic pollution (right). Overall, 247.5 million people world-wide are exposed to transbound-

ary air pollution from foreign coal plants. The top affected countries are shown in Figure 6.

Transboundary pollution affects 24.1 percent of the population in Czechia, where Poland and

Germany are the primary sources of transboundary flows.

Globally, 160 million people face SO2 pollution from coal plants that exceed the World Health

Organization (WHO) guideline value of 40 µg/m3 – and this does not account for pollution from

other sources. These WHO threshold values are evidence-informed quantitative recommenda-

tions based on a systematic review of the evidence of adverse health effects and dose-response

functions. SO2 of 40 µg/m3 is the upper limit of the 24-hour mean. The proportion of popu-

lation exposed to SO2 over 40 µg/m3 in each country is visualized in the right panel of Figure

7.

According to the WHO, ‘achieving the recommended guideline levels will deliver substantial

health benefits globally’.4 This implies that even if other natural and anthropogenic pollution

sources could be mitigated, coal-fired power plants alone are leading to substantial health risks

for large population groups.
4Detailed explanations can be found on the WHO website: https://www.who.int/news-room/questions-and-

answers/item/who-global-air-quality-guidelines
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Figure 5: Top 10 countries with the highest population exposure to coal power plant pollution,
in absolute terms (left) and as a share of population (right)
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Notes: The left figure shows population in absolute values that are exposed to any level of power plants’ pollution. The

right figure shows the proportion of population exposed to any level of power plants’ pollution.

Figure 6: Top 10 countries with the highest population and the highest proportion of population
exposed to transboundary pollution
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Notes: The left figure shows population in absolute values that are exposed to any level of foreign power plants’ trans-
boundary pollution. The right figure shows the proportion of population exposed to any level of foreign power plants’
transboundary pollution.

4.2 Coal-fired air pollution at different national income levels

In this section, we show that exposure to air pollution from coal power plants varies significantly

by income levels. At the country level, we show that higher national income levels are associated
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Figure 7: Population exposed to power plant pollution

Notes: The left figure shows the proportion of population in each country exposed to any level of power plant pollution
exposure. The right figure shows the proportion of population exposed to unhealthy levels of air pollution.

Figure 8: Population exposed to transboundary pollution

Notes: The left figure shows the proportion of population in each country exposed to any level of foreign power plants’
transboundary pollution exposure. The right figure shows the proportion of population exposed to higher transboundary
pollution than domestic pollution.

with more coal-fired power plants, and thus higher pollution burdens. Similar patterns are found

within countries, with negative associations between local income levels and air quality. More

flexible fittings show a concave function, suggesting that air pollution from coal plants increases

in line with income levels, but with diminishing marginal pollution at higher income levels.

To assess the relationship between income levels and air pollution from coal plants, we

conduct a global analysis at the country level. We aggregate pixel-level data on SO2 pollution

and the Human Development Index (HDI) up to the country level. For SO2, we use the pollution

maps produced for this study (see Section ); for HDI and GDP, we use Kummu et al. (2018);

for population, data is obtained from CIESIN (2016) to compute national GDP per capita. The

number of power plants in a given country is based on Shearer et al. (2021) (see Section 3.1).

We find a positive and strong correlation between the number of coal power plants and

national income levels (Figure 9); i.e. countries with higher incomes tend to have more coal

13



power plants. The upper three figures are for all countries other than the top four countries

with more than 200 power plants

Figure 9: Global analysis at the country level: #plants and income
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When considering the relationship between national average SO2 concentrations and incomes,

we find similar patterns that are consistent with the number of coal plants (Figure 10); i.e.

countries with higher incomes tend to face more pollution from coal power plants. The correlation

is positive and concave, suggesting that the increase in SO2 levels is slower at higher levels of

GDP per capita. This finding is consistent with the notion that countries at higher income

levels may move away from polluting energy sources, such as coal, and transition to cleaner,

more efficient alternatives. National GDP also shows a positive but convex relationship with

SO2, suggesting that higher GDP levels are associated with increasingly higher SO2 pollution.

Our interpretation is that GDP measures economic output, while GDP per capita measures

wealth or income. Economic outputs are mechanically always correlated with GDP, but income

may show an increasing then decreasing pattern if rich people move to clean areas. We see

similar estimates in tabular results in Table 3. GDP per capita is positively correlated with

SO2, but the quadratic fit shows an increasing and then decreasing pattern.

Besides these country-level results, we also assess the relationship between income levels and

pollution exposure by conducting a pixel-level analysis. Gridded GDP, GDP per capita, and SO2

data enable us to consider a sample of over 11 million unique locations (i.e. pixels). This enables

us to capture granular sub-national variations, thus distinguishing between areas with different

pollution and income levels with high precision of estimation. The results, summarized in Table

4, are consistent with the findings of the country-level analysis. Across the world, higher-income

areas tend to be exposed to higher SO2 pollution from coal-fired power plants. Every additional

10% increase in GDP per capita is associated with 1.64% higher SO2 pollution.

We use additional flexible fittings to explore the potential nonlinear relationship between air
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Figure 10: Global analysis at the country level: pollution and income
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pollution and income levels. First, we use restricted cubic splines with 10 knots, which yields

results (summarized in Figure 12) consistent with country-level results in Figure 10. GDP per

capita and pollution display a concave relationship, while GDP has a convex relationship with

pollution. Other flexible fitting methods, including a non-parametric kernel regression (Figure

13) and a binning regression (Figure 14) based on (Schlenker and Roberts, 2009), confirm the

findings from the polynomial fits in the country- and pixel-level analyses.

In addition, we conduct several sensitivity checks in Section S2.3. First, over half of the

considered countries have no coal-fired power plant, so their modeled SO2 concentrations are

low (residual SO2 concentrations are due to transboundary pollution). We test the robustness

of the above findings by restricting the sample to (i) 71 countries that have at least one power

plant; (ii) countries with a higher number of power plants than the median; and (iii) countries

with a plant count in the top quartile. The refined sample sizes are smaller, but the average SO2

and the 90 percentile of SO2 in the remaining countries are larger. Average SO2 measures the

ambient air quality of a representative person in that country, while the 90 percentile captures

pollution faced by the group with the least favorable air quality. Higher values suggest countries

with more power plants are generally more polluting. Results are reported in Section S2.3, and

are consistent with the main findings from the pixel-level analysis presented in Table 4.

Moreover, we conduct an additional analysis in which we only consider pixels within a 2-

degree radius of coal plants to study local inequality in exposure. This controls for the pattern

that power plants tend to be built in more industrialized and economically active areas. Even in

this restricted sample, higher GDP per capita levels are associated with higher pollution levels,

with diminishing marginal pollution for high income levels. GDP also displays a positive and

convex relationship with pollution, thus supporting the robustness of our findings. In the case of

HDI, areas with medium-level HDI scores tend to face the highest pollution exposure compared
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with those whose HDI scores are higher or lower. We interpret results on HDI variation with

caution, as the gridded HDI data by Kummu et al. (2018) display very limited subnational

variation.

4.3 ‘Strategic’ location choice

In this section, we explore the notion that location choices for polluting power plants are not

made at random. Case study evidence, especially from the U.S., documents that low-income and

ethnic minority communities are disproportionately exposed to air pollution. We analyze the re-

lationship between income and air pollution for over 1.3 million unique locations (pixels) around

over 3,800 coal plants. We find that power plant locations are indeed not evenly distributed

across income groups. In the proximity of coal plants, downwind areas are systematically poorer

than upwind areas. Poorer communities are disproportionately exposed to toxic pollution from

coal plants.

This pattern could be explained by several factors: When deciding plant locations, operators

may strategically select spots where prevailing wind directions mean that pollutants are carried

to lower-income communities. These communities are likely to have lower bargaining power to

oppose such siting decisions. This regressive environmental burden may be further aggravated

by spatial sorting once the plant assumes operations. As environmental quality (including air

quality) is priced into land values, high-income households are able to sort into cleaner upwind

areas, while low-income households are more likely to move into cheaper, more polluted areas.

To assess systematic inequalities in pollution exposure, we conduct a single difference analysis

designed to test if plants’ downwind directions are associated with lower income levels. We

estimate the following model:

Yij = βDownwindij + Planti + εij (1)

where the sample is at the plant-pixel level. We use the year when plants started to operate

to code dependent variables, where start years differ across plants. In the first stage, we use

SO2 at recipient pixel j near plant i. Our sample consists of pixels that are located within a

0.5-degree radius around plants, and located in up- or downwind locations. Pixels in crosswind

directions are dropped. If the prevailing wind direction at a plant has a reference angle of 0◦,

upwind pixels are defined as those located within -45◦ to 45◦ around plants, while downwind

areas are located within 135◦ to 180◦ and -180◦ to -135◦.

Downwindij is a binary variable that is one if pixel j is in the downwind direction of plant
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i and zero if it is in the upwind direction. We add plant fixed effects as control variables to

capture all covariates in each plant’s surrounding areas. We expect β1 to be positive when using

SO2 as the outcome variable. It measures the pollution difference in downwind areas compared

with upwind areas. In the reduced form analysis, we use GDP, GDP per capita, and HDI as

dependent variables. Our hypothesis holds if the estimated β1 is negative, which suggests that

downwind pixels tend to be poorer than upwind pixels.

Results, summarized in Table 1, show that downwind areas are indeed associated with higher

air pollution, as well as lower income. Specifically, downwind areas witness 13 percent higher

SO2 concentrations, 2.9 percent lower GDP per capita, and 0.2 percent lower HDI value. The

lower panel reports results after controlling for plant fixed effects. R2 increases to 0.3 when

SO2 is on the left-hand side, and increases to over 0.9 with economic outputs as dependent

variables. Compared with upwind pixels near the same plant, downwind regions still have 13

percent more air pollution, 1.6 percent lower GDP per capita, 2.5 percent lower GDP, and 0.1

percent lower HDI. The differences are equivalent to 0.17, 0.19, and 0.01 standard deviations in

GDP per capita, GDP, and HDI respectively. These estimates confirm the hypothesis that more

polluted downwind areas tend to host lower-income communities. Findings are consistent with

the notion that plant location choices are influenced by the income profile of surrounding areas,

and that air pollution may reinforce the low-income status of downwind areas through spatial

sorting effects.

As a robustness check, we use an alternative angle to define upwind and downwind areas.

Instead of 90◦, we use a narrower angle of 60◦ to define upwind and downwind areas. Results

for this specification, summarized in Section S2.1, are consistent with the main results presented

above. We also use alternative distance thresholds to define pollution-affected areas. Instead of

a 0.5-degree radius around plants, we restrict the sample to pixels within a 0.3 degree (roughly

35km) radius and re-estimate the model. These results are also consistent with the main findings

(Section S2.1).

Compared with results in Table 1, Table 2 shows a larger difference between downwind and

upwind pollution. The single difference analysis adopts cross-sectional data at the plant level

and only uses the year when the operation started, while the double-difference analysis uses

panel data for all years 1992-2013. This suggests plant operation exacerbates the inequality

between pollution exposure.
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4.4 Does air pollution cause a reduction in income levels?

Air pollution has been documented to be detrimental to health and productivity, and thus in-

directly people’s incomes. In this section, we use a difference-in-difference design to test the

potential impact of air pollution on income levels. We compare pollution levels and economic

indicators in downwind and upwind areas, before and after the activation of new coal plants.

First stage results confirm that differences in pollution levels are insignificant before activation,

but post-activation pollution levels are significantly higher in downwind areas. However, re-

duced form results do not confirm meaningful differences between the income levels in up- and

downwind locations. Thus, these results do not yield robust evidence that air pollution causes

reductions in income levels. This result is documented in this section for the sake of complete-

ness, and to inform future efforts for a causal identification with global coverage. Possible factors

that can explain this null result are the relatively short time series of data (which may not al-

low long-term health and productivity effects to materialize), and the fact that health-related

expenditures are included in indicators of economic activity thus diluting the impact.

To evaluate the causal effect of power plants’ operation on local economic indicators, we use

a difference-in-difference design that compares upwind and downwind pixels before and after

coal plant activation. The econometric specifications are as follows:

Yijt = β1Downwindij + β2Operatingjt

+β3Downwindij ×Operatingjt

+Pixeli + Y eart + εijt

(2)

where the sample is at the year-plant-pixel level. The time range is the same as the gridded

income dataset, i.e. 1990-2015. To ensure that pre- and post-activation periods are included, we

restrict the sample consists to 2,380 coal power units that were activated between 1992-2013 (i.e.

disregarding 3,941 units that were activated outside this time frame or have missing commission

years). Besides, we include up- and downwind pixels that are located within a 0.5-degree radius

around plants, and drop those in crosswind directions. Upwind pixels are defined as those located

-45◦ to 45◦ around plants, while downwind areas are located 135◦ to 180◦ and -180◦ to -135◦.

Upwind and downwind areas are visualized in Figure 3.

The dependent variable Yijt in the first stage is SO2 in recipient pixel i near plant j in year

t. In the reduced form, Yijt is pixel-level GDP, GDP per capita, or HDI. On the right-hand

side, Downwindij is a dummy that is one if pixel i is in the downwind direction of plant j and

zero otherwise. Operatingjt is an indicator that equals one if plant j started to operate in or
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before year t and zero otherwise. Standard errors are clustered at the plant level to capture

the autocorrelation within a given plant location across nearby pixels across time. Coefficient

β2 captures the impact of plant operation on upwind pollution and income. Coefficient β2 + β3

measures the impact of operations on downwind pollution and income. Note that β1 is not

absorbed by Pixeli as pixels could be in the upwind direction of some plants but in the downwind

direction of others.

Figure 11 offers a visual summary of the diff-in-diff analysis. The horizontal axis denotes the

year relative to the operation start year. Red lines represent downwind pixels, while blue lines

depict upwind pixels. The first stage analysis (Figure 11 left) highlights a stark increase in the

pollution levels of downwind locations. Upwind areas observe a slight increase due to upwind

pollution in the immediate vicinity of plants. The same pattern is not apparent in the reduced

form (Figure 11 right); GDP per capita at the pixel level does not display significant differences

between up- and downwind locations following the activation of coal plants. For related charts

on GDP and HDI, refer to Figure S4.2.

Figure 11: Event study figures
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Notes: Y-axis in the left panel is in the logged unit. Average SO2 among all pixels that are
upwind before operations is 0.214 in the figure logged unit, 0.815 in µg/m3; That for downwind
pre-period is 0.291 in the figure logged unit, 1.20 in µg/m3; upwind after: 0.365 and 1.53µg/m3;
downwind after: 0.593 and 2.46µg/m3.

Full first stage and reduced form results are reported in Table 2 and Table S3.1, respectively.

After plant operations, downwind regions have 17.7 percent higher SO2 compared with the same

pixel before operations. In contrast, upwind regions only have a 3 percent increase in SO2. This

indicates a strong first stage result - plant operations significantly worsen air quality in downwind

areas; upwind areas serve as counterfactuals. However, reduced form results report small and

insignificant estimates, suggesting that upwind and downwind areas behave similarly in their

income levels. In short, these results can neither support nor refute the notion that coal-plant

driven air pollution causes income reductions in affected areas.
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For completeness, we check for potential heterogeneous responses with respect to the start

year of coal plants, as well as national pollution and income levels. The hypothesis is that

countries with lower incomes and higher pollution levels may prioritize economic growth, and

thus respond differently than high-income low-pollution countries. However, results reported

in Table S3.2, S3.3 and S3.4 still show small and imprecise estimates on the interaction term

with economic variables as left-hand sides, indicating negligible impacts of plant operations on

income levels regardless of countries’ development stages. Section S2.2 summarizes findings from

a set of sensitivity checks. Results remain strongly robust to alternative definitions of up- and

downwind areas to construct the sample (i.e. alternative angles and distances).

There are at least three potential reasons for the null results in this section. First, adverse

impacts of pollution on health and labor productivity may take many years to materialize. The

time ranges considered in our sample may not be long enough to capture a meaningful reduction

in income levels. Second, the GDP and HDI data are constructed using national economic

values and subnational population as inputs (Kummu et al., 2018). Compared with our detailed

pollution trajectory modeling, income data may not be granular enough to capture small-scaled

local differences. Third, even if air pollution affects health outcomes and the quality of life, this

may not translate into a significant reduction in income levels. On the contrary, high spending

on healthcare could even push up measures of national production, such as GDP.

5 Conclusion

Many countries continue to rely on coal power plants for electricity generation, despite their

tremendous financial, societal, and environmental costs. This paper documents inequalities in

people’s exposure to toxic air pollutant emissions from the world’s almost 4,000 coal-fired power

plants. By modeling the wind-dispersion of air pollutants, we generate a high-resolution wind-

directed global air pollution map for coal plants. We find that, globally, 2.32 billion people are

exposed to air pollution originating from coal power plants. Globally, 160 million people face

SO2 pollution from coal plants that exceed the World Health Organization (WHO) guideline

value of 40 µg/m3 – and this does not account for pollution from other sources. Moreover, 247.5

million people are exposed to transboundary pollution – namely, toxic air pollution originating

from coal plants outside their country.

We find that, overall, air pollution from coal plants increases with income levels. Richer areas

have more coal plants, thus more coal plant-related pollution. However, air pollution from coal

plants increases at a diminishing rate at high income levels. This is consistent with the notion

that high-income countries transition to more efficient less polluting power sources. Our results
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are consistent for different country samples, at subnational levels, and multiple non-parametric

fitting.

We also evaluate the local-scale pollution inequality in the proximity of coal plants. We find

that areas located downwind from coal plants are systematically associated with higher pollution

and lower income levels compared to areas upwind. This is indicative of two distinct mechanisms

that are likely to be at play: The initial siting choices for coal-fired power plants are influenced by

the socioeconomic context of sites. Plant locations are systematically chosen in a way that the air

pollution burden of plants falls disproportionately on lower-income communities. Moreover, once

sites are operational, air pollution levels are reflected in property values and influence spatial

sorting decisions of communities. High pollution levels could then reinforce the low-income

status of affected communities.

Overall, this work contributes to the simulation methods of pollutant trajectory. We combine

HYSPLIT and Gaussian dispersion to track the three-dimensional pathways of air masses. This

enables the first large-scale assessment of pollution exposure inequality associated with coal-

fired power plants. Future research could further disentangle the mechanisms that drive unequal

pollution exposure, and explore the causal effect of plant operation on poverty and income levels

– for instance, using longer time series to take into account the long-term impacts of pollution

on lives and livelihoods.
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Table 1: Single difference results

ln(SO2) ln(GDP per capita) ln(GDP) ln(HDI)
(1) (2) (3) (4)

Downwind 0.132∗∗∗ -0.029∗∗ -0.022 -0.002∗∗

(0.010) (0.013) (0.016) (0.001)
ln(Population) 0.972∗∗∗

(0.014)
Observations 1345071 1345071 1345071 1345071
R-square 0.031 0.000 0.809 0.000
Downwind 0.132∗∗∗ -0.016∗∗ -0.025∗ -0.001∗

(0.010) (0.007) (0.013) (0.001)
ln(Population) 1.163∗∗∗

(0.017)
Observations 1345071 1345071 1345071 1345071
R-square 0.333 0.965 0.946 0.965
Y-mean 0.271 8.801 17.786 0.511
Y-sd 0.377 0.835 2.287 0.061
Plant FEs Y Y Y Y
Notes: Standard errors are clustered at the plant level.

Table 2: First stage results

ln(SO2)
(1) (2) (3) (4)

Operating 0.138∗∗∗ 0.169∗∗∗ 0.016 0.030∗∗∗

(0.016) (0.008) (0.025) (0.007)
Downwind 0.087∗∗∗ -0.058∗∗∗ 0.087∗∗∗ -0.057∗∗∗

(0.017) (0.005) (0.017) (0.004)
Operating × Downwind 0.152∗∗∗ 0.148∗∗∗ 0.151∗∗∗ 0.147∗∗∗

(0.019) (0.011) (0.019) (0.011)
Observations 34971846 34971846 34971846 34971846
R-square 0.038 0.871 0.047 0.878
Y-mean 0.347 0.347 0.347 0.347
Y-sd 0.691 0.691 0.691 0.691
Pixel FEs Y Y
Year FEs Y Y
Notes: Standard errors are clustered at the plant level.
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Table 3: Global analysis at the country level

Panel A: ln(SO2) and
ln(GDP per capita)

(1) (2) (3)
ln(GDP per capita) 1.002∗∗∗ 3.319 -41.365∗

(0.188) (2.606) (22.904)
ln(GDP per capita)2 -0.130 5.054∗

(0.146) (2.644)
ln(GDP per capita)3 -0.198∗

(0.101)
Observations 166 166 166
R-square 0.147 0.152 0.171
Y-mean 2.289 2.289 2.289
Y-sd 2.947 2.947 2.947

Panel B: ln(SO2) and ln(GDP)
ln(GDP) 0.931∗∗∗ -2.084∗ -6.628

(0.160) (1.174) (12.545)
ln(GDP)2 0.056∗∗ 0.230

(0.021) (0.479)
ln(GDP)3 -0.002

(0.006)
ln(Population) -0.348∗ -0.270 -0.252

(0.180) (0.180) (0.187)
R-square 0.298 0.326 0.326

Panel C: ln(SO2) and ln(HDI)
ln(HDI) 14.144∗∗∗ 23.110 -156.958

(2.159) (23.560) (176.894)
ln(HDI)2 -8.978 361.847

(23.493) (361.809)
ln(HDI)3 -248.442

(241.890)
Observations 166 166 166
R-square 0.207 0.208 0.213
Y-mean 2.289 2.289 2.289
Y-sd 2.947 2.947 2.947
Notes: ln(GDP per capita)2 is the square of log of GDP per capita.
Unit of SO2: nano gram/m3, unit of GDP and GDP per capita:
constant 2011 international US dollar.
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Table 4: Global analysis at the pixel level

Panel A: ln(SO2) and ln(GDP per capita)
(1) (2) (3) (4)

ln(GDP per capita) 0.190∗∗∗ 0.618 -6.126∗∗ -7.206∗∗

(0.066) (0.791) (3.007) (2.969)
ln(GDP per capita)2 -0.024 0.735∗∗ 0.823∗∗

(0.046) (0.342) (0.330)
ln(GDP per capita)3 -0.028∗∗ -0.030∗∗

(0.013) (0.012)
Observations 11163331 11163331 11163331 11163331
R-square 0.016 0.017 0.020 0.145
Y-mean 0.493 0.493 0.493 0.493
Y-sd 1.790 1.790 1.790 1.790

Panel B: ln(SO2) and ln(GDP)
ln(GDP) 0.164∗∗∗ -0.731∗∗∗ 0.106 0.380

(0.040) (0.174) (0.454) (0.338)
ln(GDP)2 0.030∗∗∗ -0.027 -0.043∗

(0.007) (0.035) (0.026)
ln(GDP)3 0.001 0.001∗∗

(0.001) (0.001)
ln(Population) 0.048 0.012 0.015 0.111∗∗∗

(0.042) (0.036) (0.037) (0.029)
R-square 0.083 0.108 0.109 0.197

Panel C: ln(SO2) and ln(HDI)
ln(HDI) 2.786∗∗∗ -1.213 9.022 -102.199

(0.753) (9.863) (50.113) (63.811)
ln(HDI)2 3.987 -16.853 211.375

(9.928) (109.894) (129.588)
ln(HDI)3 13.788 -138.517

(77.635) (83.864)
R-square 0.020 0.021 0.021 0.147
Country FEs Y
Notes: Unit of SO2: nano gram/m3, unit of GDP and GDP per capita: constant 2011
international US dollar. Standard errors are clustered at the country level.
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Figure 12: Restricted cubic splines
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Figure 13: Nonparametric kernel fitting
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Figure 14: Eighth-order polynomial for each income bin
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Online Appendix

S1 Health effects

By comparing modeled pollution levels from this study with overall pollution levels, we estimate

the marginal health impacts associated with pollution from coal plants. For this purpose, we

first estimate what total pollution levels would be in the absence of coal plants.

In the case of SO2 pollution, the marginal contribution of coal plants is calculated as: coal-

free SO2 = total SO2 − modeled SO2 contribution from coal plants. Baseline total SO2 levels

are obtained from the NASA Ozone Monitoring Instrument (OMI) (Li et al., 2020). It measures

the daily mean SO2 concentration for each 0.25-degree pixel with global coverage. We compute

the average annual SO2 concentration for 2013 and replicate the same value for all 0.01-degree

pixels. We then subtract the marginal contribution from coal plants.

We follow a similar procedure for the case of PM2.5. The marginal contribution of coal

plants is calculated as: coal-free PM2.5 = total PM2.5 − modeled PM2.5 contribution from coal

plants. Baseline total PM2.5 in 2013 is obtained from van Donkelaar et al. (2021), who provide

a monthly product with a spatial resolution of 0.01 degrees. PM2.5 contributions from coal-

fired power plants are simulated using similar methods as for SO2 (see Section 4.2). While we

are not able to track the emission of primary PM2.5 or secondary PM2.5 formed from chemical

conversions, we also simulate particle emissions based on emission inventory data described in

Section 3.1.

The next step is to estimate air pollution deaths associated with the marginal contribution

of coal-fired power plants. We follow Cropper et al. (2021) to calculate baseline deaths due to

air pollution from power plants:

∑
i

Mi = λi ×RR(Pollutioni)× Populationi

where Mi represents deaths in pixel i. λi denotes the death rate at the background level. While

λi is not observable, we estimate λi using mortality caused by baseline air pollution, 4.5 million

per year documented by HEI (2020). RR(Pollutioni) is the relative risk of death at the exposure

level. Populationi is the population size at the grid cell level. Air pollution deaths without the

contribution of coal plants (
∑

i∆Mi) can then be estimated as:

∑
i

∆Mi = λi ×RR(Pollutioni − CoalPollutioni)× Populationi
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where CoalPollutioni is the simulated plants’ contribution in pixel i’s air pollution.

We separately estimate effects of SO2 and PM2.5 using dose-response functions from Orellano

et al. (2021) and Burnett et al. (2018). PM2.5 has a concave relationship with mortality risk,

with hazardous ratios ranging from 1 to 1.8 (Burnett et al., 2018). Regarding SO2, Orellano

et al. (2021) conduct a meta-analysis to aggregate individual results on SO2 and death risks.

An increase of 10 µg/m3 in the 24-hour average exposure to SO2 is associated with an increase

in all-cause mortality, with relative risk estimated as 1.0059. Therefore, we use a linear relative

risk function by PM2.5 levels and constant relative risk for SO2 estimates.

Our modeled results suggest that 1.4 million deaths are caused by SO2 emitted from coal-

fired power plants. Among them, 0.24 million deaths and 0.61 million deaths are from India and

China respectively. For PM2.5, 2.4 million deaths are associated with pollution from coal-fired

power plants. China and India take account of 1.44 million and 0.55 million deaths, 59.8% and

22.9% of the global total. It should be noted that air pollution refers to the accumulation of

many different types of pollutants. Thus, we do not attempt to add these two values since the

effects are not mutually exclusive. Instead, we consider 2.4 million deaths to be the lower bound

estimate for deaths associated with coal power plants.

Table S1.1: Exposed population and deaths due to coal plant pollution in top 5 countries

Total population exposed to Annual air pollution deaths due to
coal plant pollution (millions) coal plant pollution (millions)

China 895.72 1.440
India 392.43 0.551
U.S. 157.02 0.021
Germany 60.96 0.020
Indonesia 43.17 0.017
World 2,319.04 2.407

Earlier studies on health effects of coal-fired power generation vary to a large degree. Vohra

et al. (2021) documents 10.2 million global excess deaths per year are due to PM2.5 from fossil

fuel combustion. In the U.S., 350,000 premature deaths are attributed to emissions from the

fossil sector. The number in India is 2.5 million people per year, representing over 30% of all-

cause deaths. Penney et al. (2009) estimates 6,000 to 10,700 annual deaths are attributed to

88 publicly-financed coal power plants worldwide. Cropper et al. (2021) conclude that 112,000

deaths are attributable annually to coal-fired power plants in India. Lueken et al. (2016) finds

between 7,500 and 52,000 people in the U.S. could be saved if switching from all coal plants

to gas, equivalent to between $20 billion and $50 billion in monetized benefits. In Europe,

Kushta et al. (2021) identifies 18,400-105,900 deaths are avoided from the phase-out of coal
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power plants’ emissions. In Africa, Marais et al. (2019) show 48,000 premature deaths due to

fossil fuel electricity generation. Results in our paper lie in the wide range of previous estimates,

and are slightly larger than most of the values, probably due to assuming all particles as PM2.5.

Our findings indicate the significant share of coal-fired power plants in pollution-caused deaths.

S2 Sensitivity checks

S2.1 ‘Strategic’ location choice

Table S2.1: Alternative angle, using 30◦ to define wind directions

ln(SO2) ln(GDP per capita) ln(GDP) ln(HDI)
(1) (2) (3) (4)

Downwind 0.156∗∗∗ -0.031∗∗ -0.022 -0.002∗∗

(0.012) (0.014) (0.017) (0.001)
ln(Population) 0.966∗∗∗

(0.015)
Observations 905860 905860 905860 905860
R-square 0.041 0.000 0.811 0.000
Downwind 0.155∗∗∗ -0.023∗∗∗ -0.041∗∗∗ -0.001∗∗

(0.012) (0.008) (0.015) (0.001)
ln(Population) 1.152∗∗∗

(0.019)
Observations 905860 905860 905860 905860
R-square 0.374 0.965 0.950 0.964
Y-mean 0.282 8.789 17.794 0.511
Y-sd 0.383 0.828 2.251 0.060
Plant FEs Y Y Y Y
Notes: Standard errors are clustered at the plant level.

Table S2.2: Alternative distance, using 0.3-degree around plants

ln(SO2) ln(GDP per capita) ln(GDP) ln(HDI)
(1) (2) (3) (4)

Downwind 0.211∗∗∗ -0.031∗∗ -0.032 -0.002∗∗

(0.011) (0.012) (0.020) (0.001)
ln(Population) 0.988∗∗∗

(0.019)
Observations 498187 498187 498187 498187
R-square 0.064 0.000 0.799 0.000
Y-mean 0.404 8.812 17.952 0.512
Y-sd 0.417 0.837 2.325 0.060
Downwind 0.213∗∗∗ -0.006 -0.019 -0.000

(0.011) (0.006) (0.018) (0.000)
ln(Population) 1.203∗∗∗
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(0.026)
Observations 498187 498187 498187 498187
R-square 0.512 0.979 0.941 0.978
Y-mean 0.404 8.812 17.952 0.512
Y-sd 0.417 0.837 2.325 0.060
Plant FEs Y Y Y Y
Notes: Standard errors are clustered at the plant level.

S2.2 Does air pollution cause poverty?

Table S2.3: Alternative angle, using 30◦ to define wind directions

ln(SO2) ln(GDP per capita) ln(GDP) ln(HDI)
(1) (2) (3) (4)

Operating 0.025∗∗∗ 0.074∗∗∗ 0.064∗∗∗ 0.002∗∗∗

(0.007) (0.010) (0.011) (0.000)
Downwind -0.068∗∗∗ 0.001 -0.000 -0.000

(0.005) (0.003) (0.004) (0.000)
Operating × Downwind 0.174∗∗∗ -0.003 0.001 0.000

(0.013) (0.006) (0.009) (0.000)
Observations 23552360 23552360 23552360 23552360
R-square 0.879 0.948 0.972 0.977
Y-mean 0.360 8.551 17.544 0.492
Y-sd 0.707 0.993 2.305 0.072
Pixel FEs Y Y Y Y
Year FEs Y Y Y Y
Notes: Standard errors are clustered at the plant level.

Table S2.4: Alternative distance, using 0.3-degree around plants

ln(SO2) ln(GDP per capita) ln(GDP) ln(HDI)
(1) (2) (3) (4)

Operating 0.094∗∗∗ 0.082∗∗∗ 0.073∗∗∗ 0.003∗∗∗

(0.010) (0.010) (0.012) (0.001)
Downwind -0.102∗∗∗ 0.001 -0.002 -0.000

(0.007) (0.002) (0.005) (0.000)
Operating × Downwind 0.264∗∗∗ -0.004 0.006 0.000

(0.015) (0.006) (0.012) (0.000)
Observations 12952862 12952862 12952862 12952862
R-square 0.874 0.948 0.965 0.977
Y-mean 0.497 8.575 17.704 0.493
Y-sd 0.822 1.002 2.372 0.073
Pixel FEs Y Y Y Y
Year FEs Y Y Y Y
Notes: Standard errors are clustered at the plant level.
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S2.3 Coexistence of pollution and poverty

Table S2.5: Summary statistics on refined samples

Original sample Refined 1 Refined 2 Refined 3
#Pixels 11,163,331 6,695,940 5,352,553 3,659,278
Average SO2 0.493 0.583 0.688 0.919
Std.dev. 1.790 1.952 2.115 2.422
90 percentile 0 0.952 2.496 7.467

Table S2.6: SO2 and GDP per capita using refined samples

Panel A: ln(SO2) and ln(GDP per capita)
Sample: Refined 1

(1) (2) (3) (4)
ln(GDP per capita) 0.029 1.604 -0.236 -10.616∗

(0.089) (0.982) (5.260) (6.154)
ln(GDP per capita)2 -0.084 0.115 1.188∗

(0.052) (0.571) (0.676)
ln(GDP per capita)3 -0.007 -0.043∗

(0.020) (0.024)
Observations 6695940 6695940 6695940 6695940
R-square 0.000 0.005 0.005 0.146
Y-mean 0.583 0.583 0.583 0.583
Y-sd 1.952 1.952 1.952 1.952

Panel B: ln(SO2) and ln(GDP per capita)
Sample: Refined 2

ln(GDP per capita) -0.050 1.544 2.798 -11.828
(0.121) (0.983) (5.958) (7.351)

ln(GDP per capita)2 -0.084 -0.219 1.320
(0.052) (0.652) (0.806)

ln(GDP per capita)3 0.005 -0.048
(0.023) (0.029)

Observations 5352553 5352553 5352553 5352553
R-square 0.000 0.004 0.004 0.136
Y-mean 0.688 0.688 0.688 0.688
Y-sd 2.115 2.115 2.115 2.115

Panel C: ln(SO2) and ln(GDP per capita)
Sample: Refined 3

ln(GDP per capita) -0.209∗∗ 1.515 5.580 -14.072
(0.090) (1.844) (8.290) (11.489)

ln(GDP per capita)2 -0.087 -0.506 1.599
(0.092) (0.880) (1.252)

ln(GDP per capita)3 0.014 -0.058
(0.031) (0.044)

Observations 3659278 3659278 3659278 3659278
R-square 0.005 0.008 0.008 0.117
Y-mean 0.919 0.919 0.919 0.919
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Y-sd 2.422 2.422 2.422 2.422
Country FEs Y
Notes: Unit of SO2: nano gram/m3, unit of GDP and GDP per capita: constant 2011
international US dollar. Standard errors are clustered at the country level.

Table S2.7: SO2 and GDP using refined samples

Panel A: ln(SO2) and ln(GDP)
Sample: Refined 1

(1) (2) (3) (4)
ln(GDP) 0.118∗∗∗ -0.862∗∗∗ 0.844 1.129∗∗∗

(0.038) (0.254) (0.572) (0.407)
ln(GDP)2 0.033∗∗∗ -0.082∗ -0.096∗∗∗

(0.010) (0.044) (0.033)
ln(GDP)3 0.003∗∗ 0.003∗∗∗

(0.001) (0.001)
ln(Population) 0.153∗∗∗ 0.104∗∗∗ 0.112∗∗∗ 0.144∗∗∗

(0.046) (0.032) (0.034) (0.041)
R-square 0.104 0.126 0.127 0.205

Panel B: ln(SO2) and ln(GDP)
Sample: Refined 2

ln(GDP) 0.106∗∗ -0.885∗∗∗ 0.874 1.037∗∗

(0.040) (0.256) (0.646) (0.454)
ln(GDP)2 0.034∗∗∗ -0.085∗ -0.091∗∗

(0.010) (0.049) (0.036)
ln(GDP)3 0.003∗∗ 0.003∗∗

(0.001) (0.001)
ln(Population) 0.205∗∗∗ 0.147∗∗∗ 0.157∗∗∗ 0.163∗∗∗

(0.048) (0.033) (0.036) (0.045)
R-square 0.121 0.140 0.142 0.203

Panel C: ln(SO2) and ln(GDP)
Sample: Refined 3

ln(GDP) 0.148∗∗ -1.080∗∗∗ 1.257 1.463∗∗

(0.059) (0.229) (0.835) (0.583)
ln(GDP)2 0.042∗∗∗ -0.114∗ -0.125∗∗

(0.009) (0.060) (0.044)
ln(GDP)3 0.003∗∗ 0.003∗∗∗

(0.001) (0.001)
ln(Population) 0.232∗∗∗ 0.163∗∗∗ 0.177∗∗∗ 0.234∗∗∗

(0.059) (0.042) (0.044) (0.044)
R-square 0.144 0.165 0.167 0.210
Country FEs Y
Notes: Unit of SO2: nano gram/m3, unit of GDP and GDP per capita:
constant 2011 international US dollar. Standard errors are clustered at
the country level.
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Table S2.8: SO2 and HDI using refined samples

Panel A: ln(SO2) and ln(HDI)
Sample: Refined 1

(1) (2) (3) (4)
ln(HDI) 0.905 -0.316 -51.708 -337.796

(1.606) (27.775) (133.311) (220.414)
ln(HDI)2 1.131 98.098 650.791

(25.468) (257.632) (422.278)
ln(HDI)3 -60.203 -406.628

(165.204) (263.778)
R-square 0.001 0.001 0.001 0.151

Panel B: ln(SO2) and ln(HDI)
Sample: Refined 2

ln(HDI) -0.549 -23.676 -154.370 -541.779∗

(2.319) (36.339) (210.878) (314.125)
ln(HDI)2 20.950 264.496 1038.392∗

(33.076) (398.364) (596.010)
ln(HDI)3 -149.504 -649.310∗

(249.063) (370.308)
R-square 0.000 0.002 0.003 0.143

Panel C: ln(SO2) and ln(HDI)
Sample: Refined 3

ln(HDI) -1.240 -10.249 -51.463 -796.260∗

(2.976) (42.751) (324.803) (373.603)
ln(HDI)2 8.296 85.102 1522.164∗∗

(38.847) (625.054) (706.029)
ln(HDI)3 -47.142 -950.258∗∗

(395.360) (437.931)
R-square 0.001 0.001 0.001 0.128
Country FEs Y
Notes: Unit of SO2: nano gram/m3, unit of GDP and GDP per capita:
constant 2011 international US dollar. Standard errors are clustered at
the country level.

Table S2.9: SO2 and income using pixels within 2-degree of any plant

Panel A: ln(SO2) and ln(GDP per capita)
Sample: Pixels near plants

(1) (2) (3) (4)
ln(GDP per capita) 0.213∗∗ 2.513 -1.664 -15.360∗∗

(0.092) (2.135) (8.253) (6.260)
ln(GDP per capita)2 -0.121 0.332 1.725∗∗

(0.114) (0.962) (0.682)
ln(GDP per capita)3 -0.016 -0.063∗∗

(0.037) (0.024)
Observations 3755823 3755823 3755823 3755823
R-square 0.005 0.007 0.007 0.086
Y-mean 1.386 1.386 1.386 1.386
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Y-sd 2.798 2.798 2.798 2.798
Panel B: ln(SO2) and ln(GDP)

Sample: Pixels near plants
ln(GDP) 0.239∗∗∗ -0.648∗∗∗ 0.066 0.738

(0.045) (0.232) (0.836) (0.695)
ln(GDP)2 0.028∗∗∗ -0.017 -0.058

(0.007) (0.060) (0.050)
ln(GDP)3 0.001 0.002

(0.001) (0.001)
ln(Population) 0.081 0.049 0.052 0.228∗∗∗

(0.074) (0.065) (0.068) (0.040)
R-square 0.073 0.080 0.081 0.146

Panel C: ln(SO2) and ln(HDI)
Sample: Pixels near plants

ln(HDI) 2.748∗ 12.632 -188.343 -353.364∗∗

(1.520) (29.239) (139.286) (148.676)
ln(HDI)2 -8.926 367.110 672.963∗∗

(26.236) (264.072) (276.158)
ln(HDI)3 -231.182 -416.849∗∗

(166.568) (167.551)
R-square 0.004 0.005 0.006 0.087
Country FEs Y
Notes: Unit of SO2: nano gram/m3, unit of GDP and GDP per capita: constant 2011
international US dollar. Standard errors are clustered at the country level.

37



S3 Reduced form tables

Table S3.1: Reduced form results

Panel A: ln(GDP per capita)
(1) (2) (3) (4)

Operating 0.977∗∗∗ 0.905∗∗∗ 0.469∗∗∗ 0.075∗∗∗

(0.033) (0.014) (0.064) (0.009)
Downwind -0.033∗∗ -0.005 -0.034∗∗∗ 0.001

(0.013) (0.010) (0.013) (0.002)
Operating × Downwind 0.010 0.001 0.007 -0.003

(0.012) (0.006) (0.012) (0.006)
Observations 34971846 34971846 34971846 34971846
R-square 0.232 0.829 0.313 0.948
Y-mean 8.563 8.563 8.563 8.563
Y-sd 1.002 1.002 1.002 1.002

Panel B: ln(GDP)
Operating 1.074∗∗∗ 0.972∗∗∗ 0.534∗∗∗ 0.064∗∗∗

(0.037) (0.014) (0.068) (0.010)
Downwind 0.023 -0.008 0.021 -0.001

(0.033) (0.011) (0.033) (0.003)
Operating × Downwind 0.003 0.008 0.000 0.003

(0.028) (0.009) (0.028) (0.008)
ln(Population) 0.854∗∗∗ 0.000 0.853∗∗∗ 0.000

(0.018) (.) (0.018) (.)
Observations 34971846 34971846 34971846 34971846
R-square 0.474 0.944 0.491 0.971
Y-mean 17.534 17.534 17.534 17.534
Y-sd 2.337 2.337 2.337 2.337

Panel C: ln(HDI)
Operating 0.071∗∗∗ 0.065∗∗∗ 0.032∗∗∗ 0.002∗∗∗

(0.002) (0.001) (0.005) (0.000)
Downwind -0.003∗∗∗ -0.001 -0.003∗∗∗ -0.000

(0.001) (0.001) (0.001) (0.000)
Operating × Downwind 0.002∗ 0.001∗ 0.001 0.000

(0.001) (0.000) (0.001) (0.000)
Observations 34971846 34971846 34971846 34971846
R-square 0.232 0.840 0.327 0.977
Y-mean 0.493 0.493 0.493 0.493
Y-sd 0.073 0.073 0.073 0.073
Pixel FEs Y Y
Year FEs Y Y
Notes: Standard errors are clustered at the plant level.

Table S3.2: Heterogeneity by plant start year

Panel A: old plants (1992-2007)
ln(SO2) ln(GDP per capita) ln(GDP) ln(HDI)
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(1) (2) (3) (4)
Operating 0.025∗∗ 0.101∗∗∗ 0.094∗∗∗ 0.005∗∗∗

(0.010) (0.015) (0.016) (0.001)
Downwind -0.081∗∗∗ 0.000 -0.003 -0.000

(0.009) (0.005) (0.006) (0.000)
Operating × Downwind 0.153∗∗∗ 0.001 0.007 0.000

(0.015) (0.008) (0.010) (0.000)
Observations 19441994 19441994 19441994 19441994
R-square 0.873 0.949 0.967 0.973
Y-mean 0.365 8.667 17.757 0.503
Y-sd 0.697 1.053 2.306 0.074

Panel B: new plants (2008-2013)
Operating 0.027∗∗ 0.117∗∗∗ 0.099∗∗∗ 0.002∗∗

(0.013) (0.024) (0.025) (0.001)
Downwind -0.033∗∗∗ 0.002 0.000 -0.000

(0.004) (0.002) (0.003) (0.000)
Operating × Downwind 0.158∗∗∗ -0.012 -0.004 0.000

(0.017) (0.008) (0.016) (0.000)
Observations 15529852 15529852 15529852 15529852
R-square 0.885 0.946 0.974 0.981
Y-mean 0.323 8.432 17.256 0.480
Y-sd 0.683 0.918 2.347 0.070
Pixel FEs Y Y Y Y
Year FEs Y Y Y Y
Notes: Standard errors are clustered at the plant level.

Table S3.3: Heterogeneity by plant country’s income

Panel A: rich quartile
ln(SO2) ln(GDP per capita) ln(GDP) ln(HDI)

(1) (2) (3) (4)
Operating 0.029∗∗∗ 0.019∗ 0.022 0.002∗∗

(0.008) (0.011) (0.016) (0.001)
Downwind -0.071∗∗∗ -0.002 -0.006 -0.000

(0.010) (0.005) (0.011) (0.000)
Operating × Downwind 0.141∗∗∗ 0.002 0.010 0.001

(0.018) (0.011) (0.024) (0.001)
Observations 6308380 6308380 6308380 6308380
R-square 0.956 0.971 0.964 0.979
Y-mean 0.464 10.010 17.741 0.585
Y-sd 0.809 0.742 2.735 0.063

Panel B: poor quartile
Operating 0.014 0.022∗ 0.020 -0.001

(0.017) (0.013) (0.017) (0.001)
Downwind -0.054∗∗∗ 0.002 0.006 -0.000

(0.009) (0.003) (0.005) (0.000)
Operating × Downwind 0.192∗∗∗ -0.005 -0.019 0.001

(0.029) (0.011) (0.017) (0.001)
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Observations 4990440 4990440 4990440 4990440
R-square 0.916 0.954 0.965 0.991
Y-mean 0.479 7.947 17.414 0.428
Y-sd 0.921 0.526 1.846 0.069
Pixel FEs Y Y Y Y
Year FEs Y Y Y Y
Notes: Standard errors are clustered at the plant level.

Table S3.4: Heterogeneity by plant country’s pollution

Panel A: polluting quartile
ln(SO2) ln(GDP per capita) ln(GDP) ln(HDI)

(1) (2) (3) (4)
Operating 0.029∗∗ 0.009 0.006 -0.001

(0.013) (0.010) (0.015) (0.001)
Downwind -0.079∗∗∗ -0.004 0.003 -0.001∗∗∗

(0.009) (0.003) (0.005) (0.000)
Operating × Downwind 0.217∗∗∗ 0.012 -0.009 0.002∗∗∗

(0.024) (0.010) (0.015) (0.000)
Observations 7165002 7165002 7165002 7165002
R-square 0.932 0.987 0.973 0.990
Y-mean 0.622 8.769 17.637 0.490
Y-sd 0.991 1.130 2.088 0.103

Panel B: clean quartile
Operating 0.039∗∗∗ 0.065∗∗∗ 0.049∗ 0.002∗

(0.008) (0.021) (0.028) (0.001)
Downwind -0.029∗∗∗ -0.001 -0.021 -0.000

(0.006) (0.006) (0.014) (0.000)
Operating × Downwind 0.072∗∗∗ 0.003 0.052 0.001

(0.012) (0.015) (0.033) (0.001)
Observations 4133818 4133818 4133818 4133818
R-square 0.936 0.980 0.953 0.981
Y-mean 0.209 9.672 17.528 0.560
Y-sd 0.460 1.144 2.835 0.083
Pixel FEs Y Y Y Y
Year FEs Y Y Y Y
Notes: Standard errors are clustered at the plant level.
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S4 Additional figures

Figure S4.1: Global analysis at the country level: #plants and income
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Figure S4.2: Event study figures: pollution and GDP, HDI
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